WAVES

Physics

Waves transmit ENERGY from one place to another.

\square The source of all waves is something that vibrates.

Simple Harmonic Motion

\square Simple Harmonic Motion (SHM) - Back and forth oscillatory motion.
\square Ex: Pendulums, Springs
\square Motion looks like a sine curve.

\square Crest - high point on a wave
\square Trough - low point on a wave
\square Amplitude (A) - the distance from the midpoint to the crest.
\square The amplitude of a wave is a measure of how much energy it carries.
\square Wavelength ($\boldsymbol{\lambda}$)- the distance from the top of one crest to the top of the next one (or between successive identical parts of the wave)

Frequency and Period

\square Frequency (f)- number of vibrations an object makes per second
\square Units $=$ Hertz ($\mathrm{Hz}=$ cycle $/$ second)
\square Period (T) - number of seconds it takes to go through one vibration
\square Units = seconds
\square Frequency (f) and period (T) are reciprocals of each other.
\square Ex: If the frequency of a wave is 4 Hz , what is its period?

Wave Motion

\square Most of the information around us gets to us in some form of wave.
\square Sound is energy that travels to our ears in the form of one kind of wave.
\square Light is energy that comes to our eyes in the form of a different kind of wave.
\square The signals that reach our radios and TVs also travel as waves.

Wave Motion

- When energy is transferred by a wave from a vibrating source to a distant receiver, there is no transfer of matter between the two points!
\square The energy transferred from a vibrating source to a receiver is carried by a disturbance in a medium, not by matter moving from one place to another within the medium.

A circular water wave in a still pond moves out from the center in an expanding circle.

Wave Speed

\square The speed of a wave depends on the medium through which it travels.
\square Whatever the medium, the speed, wavelength, and frequency of the wave are related

$$
\text { Wave speed = wavelength } X \text { frequency }
$$

$$
v=\lambda \times f
$$

$$
v=\lambda \times f
$$

Complete the following table:

Table 27.	Sound Waves		
Wavelength (m)	Frequency (Hz)	Wave Speed $(\mathrm{m} / \mathrm{s})$	
2.13	160		
1.29		340	
	396	340	
0.64	528		

Transverse Waves

\square Transverse Waves - the motion of the medium is at right angles to the direction in which the wave travels
\square Examples: stretched strings in musical instruments, waves on surfaces of liquids, radio waves, light waves, and s-waves (earthquakes)

Ex: The water waves below are traveling with a speed of 2 m / s and splashing periodically against the Wilbert's perch. Each adjacent crest is 4 meters apart and splashes Wilbert's feet upon reaching his perch. How much time passes between each successive drenching?

Transverse Wave

Dir'n of Eneng Transport

Longitudinal Waves

\square Longitudinal Waves - particles move along the direction of the wave
\square Examples: sound waves and p-waves (earthquakes)

Longitudinal Wave

Particle Movenent
\rightarrow, \rightarrow
Dir'n of Energry Transport

- warm

> Ex: A hiker shouts towards a vertical cliff 800 m away. The echo is heard 2.33 s later. What is the speed of the hiker's voice in air?

