Uniform Circular Motion

Uniform Circular Motion

- An object moves at a constant speed in a circular path. Is it accelerating?

```
Yes! The object is changing direction so its velocity is changing.
```

- What is the direction of the acceleration?

FIGURE 10.15 -
The only force that is exerted on the whirling can (neglecting gravity) is directed toward the center of circular motion. This is a centripetal force. No outward force acts on the can.

Dynamics of Uniform Circular Motion

- There are TWO ways to accelerate: By changing speed OR changing direction of motion.
- For changing speed:

$$
a_{T}=\frac{v-v_{0}}{t}
$$

- $\mathrm{a}_{\mathrm{T}}=$ tangential acceleration

For changing direction:

$$
\begin{aligned}
& a_{c}=\frac{v^{2}}{r} \\
& \mathrm{a}_{\mathrm{c}}=\text { centripetal acceleration }
\end{aligned}
$$

- Acceleration means that velocity changes. Velocity is a vector, thus it has magnitude and direction. Therefore, an object can accelerate either by changing its speed and/or changing its direction of motion.
Ex: A mass of 7 kg is swung in a circle of radius 4 m with a velocity of $3 \mathrm{~m} / \mathrm{s}$.
What is the object's centripetal acceleration?

Forces Cause Acceleration

- Forces cause acceleration, therefore a force is necessary to change either the speed or the direction of motion.
- If the force and the velocity are parallel, only the speed of the object changes.

$a=12 \mathrm{mPH} / \mathrm{sec}$
- If the force and the velocity are perpendicular, only the direction of motion changes. Looking down on the car:

$$
\begin{aligned}
a & =v^{2} / R \\
m a & =F_{f}
\end{aligned}
$$

- The car is accelerating because it is changing its direction of motion. F_{f} causes this acceleration.

Centripetal Force

- An object in motion wants to keep moving in a straight line (Inertia).
- In order to move in a circle, a CENTRIPETAL FORCE is required.
- If we remove the inward force acting on the particle, the object will no longer accelerate. Then, it will fly off tangent and move in a straight line at constant speed.
- The velocity vector is always TANGENT to the path.
- Tangent $=$ skimming the circle
- Centripetal = toward the center
- Centrifugal = away from the center
- There is no F_{c}, centrifugal force. The only forces allowed

FIGURE 10.14 A When the string breaks, the whirling can moves in a straight line, tangent to-not outward from the center of-its circular path. diagram are REAL FORCES ($\left.F_{g}, F_{T}, F_{S}, F_{N}, F_{f}\right)$.

REMINDER:

- Only real forces are allowed on our force diagram.
- Inward forces are (+), Outward are (-)
- Occasionally there may be outward forces such as F_{N}, but the inward force will always dominate to cause the curving in the proper direction.

Ex1: A 1000 kg car goes around a curve of radius 50 m . The coefficient of friction between the road and the tires is 0.8 . What is the greatest speed the car can take the turn?

Vocab:	
Frequency	$f=$ revolutions/time
Period	$\mathrm{f}=[$ cycles/second $=[$ Hertz $]$
Speed	$\mathrm{T}=[\mathrm{sec}]$
	$\mathrm{v}=$ dime/revolution

Vocab:
Frequency $f=$ revolutions/time
$\mathrm{f}=$ [cycles/second] = [Hertz]
Period $\quad T=$ time/revolution
$\mathrm{T}=$ [sec]
Speed $\quad v=$ distance $/$ time $=[\mathrm{m} / \mathrm{s}]$
Formulas: $\quad f=1 / T$

$$
v=2 \pi r f
$$

Ex 3: A 150 g ball tied to a string of radius 0.6 m travels in a horizontal circle and makes 20 revolutions per minute. What is the tension in the string?

