Kinematics

acceleration

Acceleration

Acceleration, a = rate of change of velocity.

- a = acceleration [m/s²]
- v = velocity [m/s]
- v_0 = initial velocity [m/s]
- t = time [sec]

$$a = \frac{v - v_0}{t}$$

- Other units for a = [ft/sec²], [mph/sec]
- Tool = accelerometer

Intuitions

- Cruise at constant velocity a = 0
- Increase velocity a = (+)
- Decrease velocity a = (-)
- Acceleration tells us the behavior of the dial on the speedometer.

Ex: If a = 5 mph/sec, the speedometer dial is jumping up in chunks of 5 mph. If a = -15 mph/sec, the dial is dropping in chunks of -15 mph each second.

Signs: Position

Only depend upon present location.
 Cartesian coordinate system:

```
X Axis: Located right of origin x = (+)
```

Located left of origin
$$x = (-)$$

Y Axis: Located above ground
$$y = (+)$$

Located under ground
$$y = (-)$$

Signs: Velocity

Only depends upon present direction of motion

X Axis: Going right
$$v_x = (+)$$

Going left
$$v_x = (-)$$

Y Axis: Going up
$$v_v = (+)$$

Going down
$$v_v = (-)$$

Signs: Acceleration

- If the velocity is (+),
 - Pick up speed: a = (+)
 - Lose speed: a = (-)
- If the velocity is (-),
 - Pick up speed: a = (-)
 - Lose speed: a = (+)

$$a = \frac{v - v_0}{t}$$

• Find a: Pick up speed, 0 to 60 mph in 4 sec

• Find a: Pick up speed, 0 to -60 mph in 4 sec

Braking to stop

$$x = y$$

$$V_x =$$

$$a_x =$$

$$a_y =$$

After a ball leaves our hand, on its vertical path, it slows down, stops at the top, then picks up speed on the way down.

Kinematics With Constant Acceleration

- Note = the speed changes smoothly
- Displacement, S-S₀, is the change in our position.
- Basic Formulas

$$a = \frac{v - v_0}{t}$$

$$\bar{v} = \frac{v + v_0}{2}$$

$$x - x_0 = \bar{v}_x t$$

$$y - y_0 = \bar{v}_y t$$

Ex: A biker is traveling E at 6 m/s. He accelerates at 2 m/s² for 10 s. What is his final velocity?

What is the area under the curve of an acceleration vs. time graph?

Elaine accelerates her F-16 jet from 0 to 120 m/s in 5 seconds. Find:

a) Her acceleration

b) The speed at each instant

c) Average velocity for the entire trip

d) Displacement for the entire trip

Elaine lands her jet at 120 m/s and accelerates at -20 m/s². Find:

- a) Her speed at each instant
- b) Time to stop:
- c) Average velocity to stop

d) Displacement to stop

- e) Average velocity for the first five seconds
- f) Displacement in those five seconds