Flat \& Banked Curves

Example Problems

Circular Motion: Review

- Newton's $2^{\text {nd }}$ Law says:

$$
\begin{aligned}
& \sum F=m a \\
& \sum F_{c}=m \frac{v^{2}}{r}
\end{aligned}
$$

- When an object moves in a circle:
- Velocity is related to period and frequency:

$$
v=2 \pi r f=\frac{2 \pi r}{T}
$$

**Reminder:

$$
\begin{aligned}
& F_{f}=\mu F_{N} \\
& F_{N}=m g
\end{aligned}
$$

If the object is on FLAT ground:

Ex 1: Driving on a flat road

On a wet day, a car begins to slip on a curve of radius 42 m when its speed reaches $12.0 \mathrm{~m} / \mathrm{s}$. What is the coefficient of static friction between the tires and the road in this weather?

Ex 2: Banking angle

(a) For a car traveling with speed v around a curve of radius r, determine a formula for the angle at which a road should be banked so that no friction is required.
(b) In which direction will friction act if a car rounds the curve at a speed lower than v?

