Conservation of Momentum

A car of mass m_{1} and a truck of mass m_{2} collide on a frictionless road.

- How do the forces on each vehicle compare?

Equal \& Opposite!

- How do the impulses of each vehicle compare?

Equal \& Opposite!
Both experience force for same amount of time.
Derivation of Conservation of Momentum Formula:

$$
\begin{aligned}
& -m_{1} \Delta v_{1}=m_{2} \Delta v_{2} \\
& -\left(m_{1} v_{1}-m_{1} v_{1 o}\right)=m_{2} v_{2}-m_{2} v_{2 o} \\
& m_{1} v_{1 o}+m_{2} v_{2 o}=m_{1} v_{1}+m_{2} v_{2}
\end{aligned}
$$

***Remember: Velocity is a vector! Don't forget negative signs!

Ex1: A 1200 kg car traveling to the right at $24 \mathrm{~m} / \mathrm{s}$ slams into the back of a 2600 kg bus traveling to the right at 14 m / s. After the collision, the car travels to the right at $16 \mathrm{~m} / \mathrm{s}$. What I the final velocity of the bus?

Ex2: A 60 kg ice skater traveling to the right at $2 \mathrm{~m} / \mathrm{s}$ collides with a 70 kg skater moving to the left at $2.5 \mathrm{~m} / \mathrm{s}$. After the collision, the 60 kg skater bounces off at $0.5 \mathrm{~m} / \mathrm{s}$.
A) What is the final velocity of the other skater?
B) How much kinetic energy is lost in the collision?

Ex2: A 60 kg ice skater traveling to the right at $2 \mathrm{~m} / \mathrm{s}$ collides with a 70 kg skater moving to the left at $2.5 \mathrm{~m} / \mathrm{s}$. After the collision, the 60 kg skater bounces off at $0.5 \mathrm{~m} / \mathrm{s}$.
A) What is the final velocity of the other skater?
B) How much kinetic energy is lost in the collision?

Conservation of Momentum

$$
m_{1} v_{1 o}+m_{2} v_{2 o}=m_{1} v_{1}+m_{2} v_{2}
$$

- In every collision, MOMENTUM is conserved.
- In rare cases, KINETIC ENERGY is also conserved.
- When both quantities are conserved, the collision is ELASTIC.
- Most collisions are INELASTIC because some kinetic energy is converted into heat, sound energy, elastic energy, etc.
- Whenever two objects collide and stick together, the collision is classified as PERFECTLY INELASTIC.
- When this occurs, the conservation of momentum equation reads:

$$
m_{1} v_{1 o}+m_{2} v_{2 o}=\left(m_{1}+m_{2}\right) v
$$

- No collision is truly elastic, but some are very close (i.e. billiard balls).

Ex3: A 300 kg railroad car traveling at $6 \mathrm{~m} / \mathrm{s}$ collides with a 450 kg railroad car at rest. The two cars lock together and move as one unit. What is the final speed of the two cars?
*Collisions aren't the only examples when momentum is conserved. Another examples is when objects explode or spring apart.
Ex4: A stationary 16 kg bomb explodes and breaks into three pieces. One piece of mass 3 kg moves to the right at $6 \mathrm{~m} / \mathrm{s}$. A second piece of mass 5 kg move to the left at 14 m / s. What is the velocity of the third piece?

