Kinematics

Formulas for Constant Acceleration

Deriving the Kinematics Formulas

 For constant acceleration, the slope on a v vs. t graph is constant.

$$y = mx + b$$

 $y = at + v_0$

Rearranging:

$$v = at + v_0$$

Area under curve = displacement

x = area of rectangle + area of triangle $x = v_0t + \frac{1}{2}(t)(v-v_0)$

multiply last term by t/t & plug in for a:

$$x = \frac{1}{2}at^2 + v_0t + x_0$$

• Solve for t in the first equation, and plug into the second equation to get an equation with no time in it.

$$v^2 - v_0^2 = 2a(x - x_0)$$

Formulas for Constant Acceleration

1.
$$v = at + v_0$$

2.
$$s - s_0 = \overline{v}t = (\frac{v + v_0}{2})t$$

3.
$$s = \frac{1}{2}at^2 + v_0t + s_0$$

4.
$$v^2 - v_0^2 = 2a(s - s_0)$$

Notes:

- 1. If time is not involved in the problem, use equation 4.
- 2. If time is involved in the problem as a given value or as the unknown, use equation 1 or 3.

Ex1: A truck comes to rest over a distance of 120 m. If it slowed down at a rate of 2.4 m/s 2 , how fast was it going initially?

Ex2: A car accelerates from 10 m/s to 25 m/s in 6 s. How far does it travel?

Ex3: A boat is initially 81 m from a dock. Starting from rest, it accelerates towards the doc for 12 s. If its final position is 25 m from the dock, solve for its acceleration.

Ex4: A ball starts from rest and rolls down a hill. It travels 9 m in 7 seconds. How far does it travel in 14 seconds?

Ex5: A car traveling at 20 m/s slams on its breaks and skids 40 m. What would be the stopping distance if it were traveling at 50 m/s?

One Dimensional Motion: Recipe

- 1. Draw a cartoon with the coordinate axis at ground level.
- 2. Label the diagram with the given information.
- 3. Pick the proper equation and solve!

- Free-fall: In the air, no friction, no parachutes.
 On earth, a = -10 m/s².
- The acceleration is always (-) because gravity always pulls down.

Example: Brad throws an orange straight up at 60 m/s.	
a)	Find the total time airborne
b)	Find the time to the apex
c)	Find the location at the zenith
d)	Find the velocity with which it hits the ground
e)	Find the time at which the speed is 20 m/s

Intuitions for Free Fall

- Any object in the air whose motion is influenced only by gravity, a = -10 m/s².
- -10 m/s² tells us that the velocity is changing in chunks of -10 m/s each second.
- If the object has initial upward velocity, gravity will take some time to stop the object and then give it negative velocity as it returns to earth.
- The position of the object is not as straightforward as the velocity.
- If an object is dropped from rest, the distance fallen each second is proportional to the odd numbers. Therefore, the total distance fallen is proportional to the sum of the odd integers.
- Note: Equation 3 is quadratic (y = at² + ...)
- Warning: Please do not use distance = (rate)(time).
- Use equations 2 or 3.