Range

& more projectile motion practice

- Range = how far a projectile travels horizontally = x
- In the lab, we launched projectiles at an angle and they landed at (approximately) the same height.

 We (should have) found that complementary angles lead to the same range.

 $x = v_{0x}t$ for max range, you want high v_{0x} and max t

- Small angles have high horizontal velocity but small t.
- Big angles have small horizontal velocity but big t.

Derivation of the "Range Equation"

$$R = x = v_{0x}t$$

We can use this equation any time a projectile is launched at an angle and returns to the same height.

Ex: On the "More Projectile Motion" WS, we solved how far away a soccer ball would land when kicked at 15 m/s at a 53° angle in problem 2C. Confirm your answer using our shortcut equation.

In the absence of air resistance, maximum range occurs at 45°. A projectile launched at this angle has a lot of horizontal velocity and will be in the air for a long time.

Ex 1: Ori Throws a football with initial velocity 50 m/s at 36.9°.

Find:

1. Total time airborne

- 2. Range
- 3. Maximum altitude
- 4. Time to reach apex
- 5. Location at t=5
- 6. Velocity at t=5

* Note: 1. If we run horizontally at 40 m/s, we will stay underneath the ball at all times.

2. A ball thrown straight up at 30 m/s will be airborne for the same time (6 sec) as a ball thrown with an initial mixed velocity vector where v_{0y} = 30 m/s.

Ex 2: Justin throws a basketball at 50 m/s at 36.9° from atop a gymnasium whose elevation is 675 m.

Find:

A. Total time airborne

- B. Range
- C. Time to maximum elevation
- D. Location of maximum elevation
- E. Location at which the total speed is 85 m/s