The Simple Pendulum

The Simple Pendulum

- Exhibits Simple Harmonic Motion (SHM) as it oscillates back and forth.
- What does the period (T) of the SHM depend on?

$$
T=2 \pi \sqrt{\frac{L}{g}}
$$

Ex1: A simple pendulum has a period of 6.5 s on Earth.
(a) What is its frequency?
(b) What is its length?

Simple Harmonic Motion: SHM

- From the graph of SHM, we can find:
- Amplitude (A)
- Period (T)
- Frequency (f)
- We can also express the frequency as an angular frequency in radians per second.

1 cycle $=2 \pi \mathrm{rad}$

$$
\omega=2 \pi f
$$

Simple Harmonic Motion: SHM

- We can write an equation for the object's displacement as a function if time.
- What type of graph does this look like?

$$
\begin{array}{ll}
x=A \sin (\omega t) & \omega=2 \pi f \\
x=A \cos (\omega t) & A=\text { Amplitude }
\end{array}
$$

Ex2: The graph shows an object's displacement as a function of time.
(a) What is its period of motion?
(b) What is the frequency?
(c) What is the angular frequency?
(d) What is the amplitude?
(e) Write a displacement equation for the motion above.
(f) What is the object's displacement at 4.5 s ?

