Gravitational PE Function

The Real Gravitational PE Function

- Recall, the relationship between a conservative force and its potential energy function is:

$$
F_{r}=-\frac{d U}{d r} \quad U_{r}=-\int F_{r} d r
$$

- The force of gravity is $\frac{-G m_{1} m_{2}}{r^{2}} \quad \begin{aligned} & \text { (where }- \text { sign indicates the force } \\ & \text { is attractive) }\end{aligned}$
- Therefore, the PE function is

$$
U_{r}=-\int \frac{-G m_{1} m_{2}}{r^{2}} d r=G m_{1} m_{2} \int \frac{1}{r^{2}} d r=-\frac{G m_{1} m_{2}}{r}
$$

- So, we have negative potential energy.
- Where will we have zero potential energy? At ∞

$$
U=-\frac{G m M}{r}
$$

- Let's say I move a book from the floor to height h . What is the change in the potential energy?

$$
\begin{aligned}
\Delta U & =U_{f}-U_{i} \\
& =-\frac{G m_{1} m_{2}}{R_{E}+h}+\frac{G m_{1} m_{2}}{R_{E}} \\
& =-\frac{G m_{1} m_{2} R_{E}}{\left(R_{E}+h\right) R_{E}}+\frac{G m_{1} m_{2}\left(R_{E}+h\right)}{R_{E}\left(R_{E}+h\right)} \\
& =\frac{G m_{1} m_{2} h}{\left(R_{E}+h\right) R_{E}} \\
\text { If } h \ll R_{E} \quad \Delta U & =\frac{G m_{1} m_{2} h}{R_{E}^{2}} \quad \begin{array}{l}
\text { When an object is lifted, it gains } \\
\text { potential energy because it has } \\
\text { less negative energy. This is a } \\
\text { positive change. }
\end{array}
\end{aligned}
$$

- This is why the potential energy near the surface of the earth $=\mathrm{mgh}$.

Escape Speed

- How fast must you fire a projectile so that it can completely escape Earth's gravitational pull?
- If it just escapes, it will get to ∞ with zero speed.
- It will have zero energy there, so by conservation of energy:

$$
K+U=0
$$

$$
\begin{gathered}
\frac{1}{2} m v^{2}-\frac{G m M}{r}=0 \\
v^{2}=\frac{2 G M}{r} \\
v_{\text {esc }}=\sqrt{\frac{2 G M}{r}}
\end{gathered}
$$

Orbital Energy

- A body of mass m has a circular orbit of radius r. What is its total energy?

$$
\begin{gathered}
E=K+U \\
=\frac{1}{2} m v^{2}-\frac{G m M}{r} \\
=\frac{1}{2} m\left(\frac{G M}{r}\right)-\frac{G m M}{r} \\
E=-\frac{G m M}{2 r}
\end{gathered}
$$

An object with (-) energy is bound.

