Optics:
 Mirror Equations

Concave Mirrors

$$
\begin{gathered}
f=\text { focal length }=(+) \\
p=\text { object location }=(+) \\
q=\text { image location } \\
M=\text { magnification }
\end{gathered}
$$

$q=(+)$ real, inverted; light rays actually intersect
$\mathrm{q}=(-)$ virtual, upright; light rays do not actually intersect image only exists in our minds.
$\frac{1}{f}=\frac{1}{p}+\frac{1}{q}$

$$
R=2|f|
$$

$H_{\text {image }}=M * H_{\text {object }}$

Calculate the image distance, magnification, and image height for the problems below.

- A concave mirror has a radius of curvature of 40 cm . A 5 cm high object is placed 60 cm in front of the mirror.
- An object 5 cm tall is placed 10 cm in front of a concave mirror of focal length 20 cm .

Convex Mirrors

$$
\begin{gathered}
f=\text { focal length }=(-) \\
p=\text { object location }=(+) \\
q=\text { image location }=(-) \\
M=\text { magnification }
\end{gathered}
$$

Diverging mirrors only make virtual, upright images.

$$
\begin{array}{rlrl}
\frac{1}{f}=\frac{1}{p}+\frac{1}{q} & M & =\left|\frac{q}{p}\right| \\
R & =2|f| & H_{\text {image }} & =M * H_{\text {object }}
\end{array}
$$

- A convex mirror has a radius of curvature of 2 m . A 3 m high object is placed 6 m from the mirror. Find the image distance, magnification, and image height.

