Conservation of Energy

Conservation of Energy

- As usual, we will set initial energy equal to final energy.
- If an object <u>starts higher</u> than its later position, it will have <u>potential energy</u> at the start.
- For falling shapes, we will note how far its center of mass descends.
- If an object is <u>spinning</u>, it will have <u>rotational kinetic energy</u>.
- If the <u>axis an object is rotating around is moving linearly</u>, it will have <u>translational kinetic energy</u>.

• If a wheel rolls without slipping, the bottom of the wheel is always at rest instantaneously.

Ex1: A ball of mass M and radius R starts from rest at a height of 2 m and rolls without slipping down a 30° slope.

- A) What is the linear speed of the ball at the bottom of the hill?
- B) Would a hoop of the same mass and radius reach the same speed at the bottom of the hill?

Ex2: A uniform rod of length L and mass M is free to rotate on a frictionless pin passing through one end. The rod is released from rest in the horizontal position.

- A) What is the rod's angular speed when it reaches its lowest point?
- B) Determine the linear speed of the end of the rod when it is at its lowest position.

Ex3: What is the speed of the 12 kg block when the 20 kg block hits the ground? The system is released from rest when the 20 kg block is 4 m off the ground.

Calculating Work & Power

Linear	Rotational
$W = \int F dx$	$W = \int \tau d\theta$
$W = Fd\cos\theta$	$W = \tau \theta$
$W_{net} = \Delta K$	$W = \Delta \frac{1}{2} I \omega^2$
$\overline{P} = \frac{W}{4}$	same
P = Fv	$P = \tau \omega$