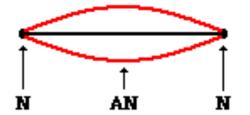


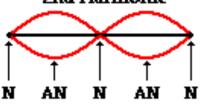
Modes of Vibration

- Vibrations in musical instruments create the sounds we hear from them.
- These sounds are standing waves which are created in the instruments.

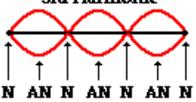
Fundamental Frequency or 1st Harmonic


- □ The standing wave can be:
 - Closed at BOTH ends (guitar strings)

1. Closed Ends: Standing Waves in Strings

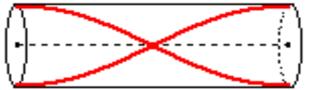

- When a guitar string vibrates at its natural frequency, the ends become nodes.
 - In between these two nodes at the end of the string, there must be at least one antinode.
- This produces a standing wave in the string with the lowest frequency (and therefore longest wavelength) possible.
- This is known as the fundamental frequency also called the first harmonic. Fundamental Frequency

or 1st Harmonic



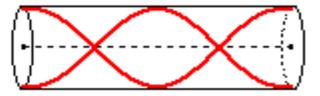
Harmonics & Overtones

- Multiples of the fundamental frequency are called overtones.
- The <u>second harmonic</u> (first overtone) of a guitar string is produced by adding one more node between the ends of the guitar string. The second harmonic is one **octave** higher than the first.
 2nd Harmonic

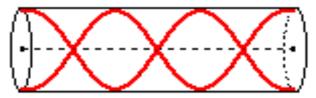

The <u>third harmonic</u> (second overtone) of a guitar string is produced by adding two nodes between the ends of the guitar string.
3rd Harmonic

2. Open Ends

□ Antinodes always form at the end of **open pipes**.



<u># of quarter $\lambda's$ </u>


Fundamental frequency

2nd Harmonic

First overtone

3rd Harmonic

Second overtone

Closed/Closed & Open/Open

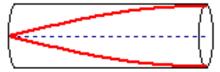
$$f = \frac{nv}{4L}$$
 n = # of quarter wavelengths
L = length of string

Harmonic Number	Overtone Number	n (same ends)	frequency
First harmonic	Fundamental frequency	2	f
Second harmonic	First overtone	4	2f
Third harmonic	Second overtone	6	3f
N th harmonic	(N th -1) overtone	N*2	N*f

Examples: Closed/Closed & Open/Open

The speed of sound waves in air is 340 m/s. Draw a diagram and determine the fundamental frequency (1st harmonic) of an open-end air column that has a length of 0.675 m.

Draw a diagram and determine the second harmonic for a wave in a string of the same length.


3. Closed/Open

Nodes form at the closed end and antinodes form at the open end.

 Instruments that are closed at one end only have odd numbered harmonics.
 <u># of quarter λ's</u>

1st Harmonic

Fundamental frequency

First overtone

Second overtone

Closed/Open

c nv	n = # of quarter wavelengths
$f = \frac{1}{4L}$	L = length of string

Harmonic Number	Overtone Number	n (diff ends)
First harmonic	Fundamental frequency	1
Third harmonic	First overtone	3
Fifth harmonic	Second overtone	5

Examples: Closed/Open

The speed of sound waves in air is 340 m/s. Draw a diagram and determine the fundamental frequency (1st harmonic) of a closed-end air column that has a length of 0.675 m.

Draw a diagram and determine the second overtone for a closed end air column of the same length.

	$f = \frac{nv}{4L}$	n = # of quarter wavelengths L = length of string		
	Harmonic Number	Overtone Number	n (same ends)	frequency
Closed/Closed & Open/Open	First harmonic	Fundamental frequency	2	f
	Second harmonic	First overtone	4	2f
	Third harmonic	Second overtone	6	3f
	N th harmonic	(N th -1) overtone	N*2	N*f
Closed/Open	Harmonic Number	Overtone Number	n (diff ends)	
	First harmonic	Fundamental frequency	1	
	Third harmonic	First overtone	3	
	Fifth harmonic	Second overtone	5	