

CONCEPTUAL PHYSICS

Power Production

Does it take a lot of water to light a light bulb? That depends on its wattage and how long it glows. In this practice page, you are to calculate the mass and volume of water that falls over a 10-m high dam to keep a 100-W light bulb glowing for 1 year.

- USE YOUR CALCULATOR WITH THIS ONE ?
- 1. First, calculate how many joules are required to keep the bulb lit for 1 year.

Energy = power × time = 100 \mathcal{W} × 1 \mathcal{Y} t × $\frac{1 J/s}{1 W}$ × $\frac{365 d}{1 y}$ t × $\frac{24 k}{1 d}$ × $\frac{3600 s}{1 k}$

2. What mass of water elevated 10 m has this much PE? From Chapter 9, recall that gravitational PE = *mgh*:

3. But this assumes 100% efficiency. A hydroelectric plant is typically 20% efficient. This means only 1 part in 5 of the PE of the falling water ends up as electricity. So the mass above must be multiplied by 5 to get the actual amount of water that must fall to keep the 100-W bulb lit.

4. This is an impressive number of kilograms! To visualize this amount of water, convert it to cubic meters. (Recall 1 kg of water occupies 1 liter, and there are 1000 liters in 1 cubic meter.)

Volume = $\frac{kg' \times 1}{kg'} \times \frac{1}{1000 \text{ K}} = \frac{m^3}{1000 \text{ K}}$

5. For comparison, an Olympic-size swimming pool holds about 4000 m³ of water. How many such poolfuls of water are required to keep a 100-W bulb lit for one year?

Number of poolfuls = $\frac{m^3}{m^3/poolful} \approx \frac{m^3}{poolful}$

Does it take a lot of water to light a light bulb? To light a city full of light bulbs? Now you have a better idea!

CONCEPTUAL PHYSICS