PS5 SHM Review

Problem #12 pg. 415

1. A block of unknown mass is attached to a spring with a spring constant of 6.50 N/m and undergoes simple harmonic motion with an amplitude of 10.0 cm. When the mass is halfway between its equilibrium position and the end point, its speed is measured to be + 30.0 cm/s. Calculate (a) the mass of the block, (b) the period of the motion, and (c) the maximum acceleration of the block.

Problem #21 pg. 415

2. A 1.50-kg block at rest on a tabletop is attached to a horizontal spring having force constant of 19.6 N/m. The spring is initially unstretched. A constant 20.0-N horizontal force is applied to the object, causing the spring to stretch. (a) Determine the speed of the block after it has moved 0.300 m from equilibrium, assuming that the surface between the block and the tabletop is frictionless. (b) Answer part (a) for a coefficient of kinetic friction of 0.200 between the block and the tabletop.

Problem #49 pg. 417

3. A car with bad shock absorbers bounces up and down with a period of 1.50 s after hitting a bump. The car has a mass of 1500 kg and is supported by four springs of equal force constant k. Determine the value of k.

Problem #53 pg. 418

4. A large block P executes horizontal simple harmonic motion as it slides across a frictionless surface with a frequency of f=1.50 Hz. Block B rests on it, as shown in Figure P13.53, and the coefficient of static friction between the two is $\mu_s = 0.600$. What maximum amplitude of oscillation can the system have if block B is not to slip?

Figure P13.53

Problem #63 pg 419

5. A simple pendulum with a length of 2.23 m and a mass of 6.74 kg is given an initial speed of 2.06 m/s at its equilibrium position. Assume that it undergoes simple harmonic motion, and determine its (a) period, (b) total energy, and (c) maximum angular displacement.

SHM Review Multiple Choice

A mass m attached to the end of a spring vibrating about its equilibrium position is described by the displacement x vs time graph as shown below.

Which of the following graphs represent the velocity vs time and the acceleration vs time graph?

	Velocity	Acceleration
(A)	I	П
(B)	I	III
(C)	Π	III
(D)	II	I
(E)	\mathbf{III}	I

A 50 newton block is attached to a spring scale which is attached to the front of a cart. The block is on a horizontal frictionless surface. When the cart accelerates the scale reads 16 newtons.

The acceleration of the cart above would be

- 13.2 m/s^2
- 10 m/s^2
- 6.8 m/s^2
- $3.2 \, \text{m/s}^2$
- $0.32 \, \text{m/s}^2$
- The force $F = A \sin x$ is applied in the x direction on the box of mass m. A is constant and x is displacement. The work done on the box in moving it from rest to a distance of one wavelength λ would be
 - (A) $\lambda A \sin \lambda$
 - (B) $\lambda A \cos \lambda$
 - (C) A sinλ
 - (D) $A \cos \lambda$
 - (E)zero

The toy car below is released in a horizontal direction from point B by releasing the spring attached to it, which is compressed to a distance of x and has a spring constant k.

Assuming no friction, the speed of a toy car at A, which is at a vertical height h above point B, would be

- A mass m attached to a spring vibrates about its equilibrium position as shown below.

The acceleration of the mass is greatest at which positions?

- (A) I only
- II only
- III only
- I and III
- II and III
- The frequency of oscillation of a pendulum of length L₀ is f₀ for a small amplitude. If the frequency is doubled, the length of the pendulum would be

 - (B)

 - (E)

Questions 7-8

The graph of velocity vs time shown below describes the motion of a mass attached to one end of a spring that performs a simple harmonic motion for one cycle of period T.

7. Which of the following graphs best represents the kinetic energy k of the mass as a function of time t?

8. Which of the following graphs best represents the elastic potential energy U of a spring as a function of its displacement x from equilibrium position for only half the cycle?

Questions 9-10

The position of a 0.4 kg mass in an oscillating mass-spring system is given by $x = 0.8\sin(9.5t)$.

9. The frequency of the oscillating mass is

- (A) 12 Hz
- (B) 9.5 Hz
- (C) 7.5 Hz
- (D) 1.5 Hz
- (E) 0.8 Hz

10. The maximum kinetic energy of the oscillating mass would be

- (A) 1.2 J
- (B) 2.4 J
- (C) 3.1 J
- (D) 11.6 J
- (E) 23.1 J

Questions 11-13

The displacement as a function of time t, $x = 0.5 \sin(14\pi t)$ is the solution of the differential equation $d^2x / dt^2 = -\omega^2 x$ describing the simple harmonic motion of a particle of mass m = 0.1 kg, with x in meters.

11. The frequency of oscillations of the particle in Hertz is

- (A) 132
- (B) 44
- (C) 1:
- (D) 7
- (E) :

12. The maximum kinetic energy, in Joules, of the oscillating particle is very nearly equal to

- (A) 0
- (B) 10
- (C) 18
- (D) 24
- (E) 44

13. The magnitude of the maximum acceleration of the particle in meters per second squared is

- (A) 2
- (B) 44
- (C) 176
- (D) 966
- (E) 1933

14. The mass M with a small mass m on the top of it oscillates on a frictionless horizontal table as shown below. The spring constant is k.

The minimum coefficient of friction between the two masses so that the system can vibrate with amplitude A without the small mass being thrown off would be

$$\frac{kA}{(m+M)g}$$

- $\frac{2kA}{mg}$
- $(C) \frac{2kA}{(m+M)g}$
- (D) $\sqrt{\frac{2kA}{(m+M)g}}$
- $(E) \frac{2k}{(m+M)g}$