1. A toy car moving at constant speed completes one lap around a circular track (a distance of 200 m) in 25.0 s. (a) What is its average speed? (b) If the mass of the car is 1.50 kg, what is the magnitude of the force that keeps it in a circle?

2. A 55.0-kg ice skater is moving at 4.00 m/s when she grabs the loose end of a rope, the opposite end of which is tied to a pole. She then moves in a circle of radius 0.800 m around the pole. (a) Determine the force exerted by the rope on her arms. (b) Compare this force with her weight.

3. A light string can support a stationary hanging load of 25.0 kg before breaking. A 3.00-kg mass attached to the string rotates on a horizontal, frictionless table in a circle of radius 0.800 m. What range of speeds can the mass have before the string breaks?

4. A coin placed 30.0 cm from the center of a rotating, horizontal turntable slips when its speed is 50.0 cm/s. (a) What provides the force in the radial direction when the coin is stationary relative to the turntable? (b) What is the coefficient of static friction between coin and turntable?

5. A person stands on a scale in an elevator. As the elevator starts, the scale has a constant reading of 501 N. As the elevator later stops, the scale reading is 391 N. Assume the magnitude of the acceleration is the same during starting and stopping, and determine (a) the weight of the person, (b) the person’s mass, and (c) the acceleration of the elevator.

6. A crate of eggs is located in the middle of the flatbed of a pickup truck as the truck negotiates an unbanked curve in the road. The curve may be regarded as an arc of a circle of radius 35.0 m. If the coefficient of static friction between crate and truck is 0.600, how fast can the truck be moving without the crate sliding?

11. Consider a conical pendulum with an 80.0-kg bob on a 10.0-m wire making an angle of $\theta = 5.00^\circ$ with the vertical (Fig. P6.13). Determine (a) the horizontal and vertical components of the force exerted by the wire on the pendulum and (b) the radial acceleration of the bob.

14. A car traveling on a straight road at 9.00 m/s goes over a hump in the road. The hump may be regarded as an arc of a circle of radius 11.0 m. (a) What is the apparent weight of a 600-N woman in the car as she rides over the hump? (b) What must be the speed of the car over the hump if she is to experience weightlessness? (That is, if her apparent weight is zero.)

15. Tarzan ($m = 85.0$ kg) tries to cross a river by swinging from a vine. The vine is 10.0 m long, and his speed at the bottom of the swing (as he just clears the water) is 8.00 m/s. Tarzan doesn’t know that the vine has a breaking strength of 1000 N. Does he make it safely across the river?

17. A 40.0-kg child sits in a swing supported by two chains, each 3.00 m long. If the tension in each chain at the lowest point is 350 N, find (a) the child’s speed at the lowest point and (b) the force exerted by the seat on the child at the lowest point. (Neglect the mass of the seat.)

19. A pail of water is rotated in a vertical circle of radius 1.00 m. What must be the minimum speed of the pail at the top of the circle if no water is to spill out?

20. A 0.400-kg object is swung in a vertical circular path on a string 0.500 m long. If its speed is 4.00 m/s at the top of the circle, what is the tension in the string there?
21. A roller-coaster car has a mass of 500 kg when fully loaded with passengers (Fig. P6.21). (a) If the car has a speed of 20.0 m/s at point A, what is the force exerted by the track on the car at this point? (b) What is the maximum speed the car can have at B and still remain on the track?

![Figure P6.21](image)

23. A merry-go-round makes one complete revolution in 12.0 s. If a 45.0-kg child sits on the horizontal floor of the merry-go-round 3.00 m from the center, find (a) the child's acceleration and (b) the horizontal force of friction that acts on the child. (c) What minimum coefficient of static friction is necessary to keep the child from slipping?

59. Figure P6.59 shows a Ferris wheel that rotates four times each minute and has a diameter of 18.0 m. (a) What is the centripetal acceleration of a rider? What force does the seat exert on a 40.0-kg rider (b) at the lowest point of the ride and (c) at the highest point of the ride? (d) What force (magnitude and direction) does the seat exert on a rider when the rider is halfway between top and bottom?

![Figure P6.59](image)

61. An amusement park ride consists of a rotating circular platform 8.00 m in diameter from which 10.0-kg seats are suspended at the end of 2.50 m massless chains (Fig. P6.61). When the system rotates, the chains make an angle $\theta = 28.0^\circ$ with the vertical. (a) What is the speed of each seat? (b) Draw a free-body diagram of a 40.0-kg child riding in a seat and find the tension in the chain.

![Figure P6.61](image)

63. An amusement park ride consists of a large vertical cylinder that spins about its axis fast enough that any person inside is held up against the wall when the floor drops away (Fig. P6.63). The coefficient of static friction between person and wall is μ_s, and the radius of the cylinder is R. (a) Show that the maximum period of revolution necessary to keep the person from falling is $T = (4\pi^2 R \mu_s / g)^{1/2}$. (b) Obtain a numerical value for T if $R = 4.00$ m and $\mu_s = 0.400$.

![Figure P6.63](image)
46. An 1800-kg car passes over a bump in a road that follows the arc of a circle of radius 42.0 m as in Figure P6.46. (a) What force does the road exert on the car as the car passes the highest point of the bump if the car travels at 16.0 m/s? (b) What is the maximum speed the car can have as it passes this highest point before losing contact with the road?

69. A model airplane of mass 0.750 kg flies in a horizontal circle at the end of a 60.0-m control wire, with a speed of 95.0 m/s. Compute the tension in the wire if it makes a constant angle of 20.0° with the horizontal. The forces exerted on the airplane are the pull of the control wire, its own weight, and aerodynamic lift, which acts at 20.0° inward from the vertical as shown in Figure P6.69.

14. A simple, 2.00-m-long pendulum is released from rest when the support string is at an angle of 25.0° from the vertical. What is the speed of the suspended mass at the bottom of the swing?

15. A bead slides without friction around a loop-the-loop (Fig. P8.15). If the bead is released from a height \(h = 3.50R \), what is its speed at point A? How great is the normal force on it if its mass is 5.00 g?

18. As shown in Figure P9.18, a bullet of mass \(m \) and speed \(v \) passes completely through a pendulum bob of mass \(M \). The bullet emerges with a speed of \(v/2 \). The pendulum bob is suspended by a stiff rod of length \(L \) and negligible mass. What is the minimum value of \(v \) such that the pendulum bob will barely swing through a complete vertical circle?