Problem Set 4

1. A block of mass 15 kg is hanging from three cords (A, B, C). What are the tensions in each of the cords?

2. A 10 kg object is subjected to two forces F_{1} and F_{2}, as shown in the diagram to the right. A third force F_{3} is applied so that the object is in static equilibrium. Find F_{3}. (Note: This is an overhead view - like the Force Table Lab.)

3. A 2 kg mass is connected by a cord to the ceiling of an elevator that accelerates up at $3 \mathrm{~m} / \mathrm{s}^{2}$. Determine the tension in the cord of the elevator.
4. A skydiver weighing 588 N reaches a velocity of $45 \mathrm{~m} / \mathrm{s}$ before opening her parachute. After falling an additional 30 m , her velocity has decreased to $25 \mathrm{~m} / \mathrm{s}$.
a. Draw a FBD of the forces acting on the women after her parachute has opened.
b. What was the upward force exerted on the parachute during that time?

5. The speed of a projectile ($m=100 \mathrm{~kg}$) traveling horizontally and slowing down under the influence of air friction can be approximately represented by

$$
v=2150-206 t+11 t^{2}
$$

where v is measured in m / s and t in s . Find a formula for the force of air as a function of time.
6. A 40 kg girl and an 8.4 kg sled are on the surface of a frozen lake, 15 m apart. By means of a rope, the girl exerts a 5.2 N force on the sled, pulling it toward her. (Assume lake is frictionless.)
a. What is the acceleration of the sled?
b. What is the acceleration of the girl?
c. How far from the girl's initial position do they meet, assuming the force remains constant?

